Cartan connections and natural and projectively equivariant quantizations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartan Connections and Natural and Projectively Equivariant Quantizations

In this paper, we analyse the question of existence of a natural and projectively equivariant symbol calculus, using the theory of projective Cartan connections. We establish a close relationship between the existence of such a natural symbol calculus and the existence of an sl(m+1,R)equivariant calculus over R in the sense of [15, 1]. Moreover we show that the formulae that hold in the non-cri...

متن کامل

Natural and Projectively Equivariant Quantizations by Means of Cartan Connections

The existence of a natural and projectively equivariant quantization in the sense of Lecomte [20] was proved recently by M. Bordemann [4], using the framework of Thomas-Whitehead connections. We give a new proof of existence using the notion of Cartan projective connections and we obtain an explicit formula in terms of these connections. Our method yields the existence of a projectively equivar...

متن کامل

Existence of Natural and Projectively Equivariant Quantizations

We study the existence of natural and projectively equivariant quantizations for differential operators acting between order 1 vector bundles over a smooth manifold M . To that aim, we make use of the Thomas-Whitehead approach of projective structures and construct a Casimir operator depending on a projective Cartan connection. We attach a scalar parameter to every space of differential operato...

متن کامل

On Natural and Conformally Equivariant Quantizations

The concept of conformally equivariant quantizations was introduced by Duval, Lecomte and Ovsienko in [8] for manifolds endowed with flat conformal structures. They obtained results of existence and uniqueness (up to normalization) of such a quantization procedure. A natural generalization of this concept is to seek for a quantization procedure, over a manifold M , that depends on a pseudo-Riem...

متن کامل

Constructing Complete Projectively Flat Connections

Theorem 1. Let T 2 be the two dimensional torus. Then for any positive integer m there is a complete torsion free projectively flat connection, ∇, on T 2 such that for any point p ∈ T 2 there is a point q ∈ T 2 with the property that any broken ∇-geodesic between p and q has at least m breaks. Moreover if T 2 is viewed as a Lie group in the usual manner, this connection is invariant under trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2007

ISSN: 0024-6107

DOI: 10.1112/jlms/jdm030